3.19 \(\int \frac{(2+3 x^2) \sqrt{5+x^4}}{x^4} \, dx\)

Optimal. Leaf size=192 \[ \frac{\left (2+9 \sqrt{5}\right ) \left (x^2+\sqrt{5}\right ) \sqrt{\frac{x^4+5}{\left (x^2+\sqrt{5}\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{x}{\sqrt [4]{5}}\right ),\frac{1}{2}\right )}{3 \sqrt [4]{5} \sqrt{x^4+5}}+\frac{6 \sqrt{x^4+5} x}{x^2+\sqrt{5}}-\frac{6 \sqrt{x^4+5}}{x}-\frac{\left (2-9 x^2\right ) \sqrt{x^4+5}}{3 x^3}-\frac{6 \sqrt [4]{5} \left (x^2+\sqrt{5}\right ) \sqrt{\frac{x^4+5}{\left (x^2+\sqrt{5}\right )^2}} E\left (2 \tan ^{-1}\left (\frac{x}{\sqrt [4]{5}}\right )|\frac{1}{2}\right )}{\sqrt{x^4+5}} \]

[Out]

(-6*Sqrt[5 + x^4])/x - ((2 - 9*x^2)*Sqrt[5 + x^4])/(3*x^3) + (6*x*Sqrt[5 + x^4])/(Sqrt[5] + x^2) - (6*5^(1/4)*
(Sqrt[5] + x^2)*Sqrt[(5 + x^4)/(Sqrt[5] + x^2)^2]*EllipticE[2*ArcTan[x/5^(1/4)], 1/2])/Sqrt[5 + x^4] + ((2 + 9
*Sqrt[5])*(Sqrt[5] + x^2)*Sqrt[(5 + x^4)/(Sqrt[5] + x^2)^2]*EllipticF[2*ArcTan[x/5^(1/4)], 1/2])/(3*5^(1/4)*Sq
rt[5 + x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0893237, antiderivative size = 192, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {1272, 1282, 1198, 220, 1196} \[ \frac{6 \sqrt{x^4+5} x}{x^2+\sqrt{5}}-\frac{6 \sqrt{x^4+5}}{x}-\frac{\left (2-9 x^2\right ) \sqrt{x^4+5}}{3 x^3}+\frac{\left (2+9 \sqrt{5}\right ) \left (x^2+\sqrt{5}\right ) \sqrt{\frac{x^4+5}{\left (x^2+\sqrt{5}\right )^2}} F\left (2 \tan ^{-1}\left (\frac{x}{\sqrt [4]{5}}\right )|\frac{1}{2}\right )}{3 \sqrt [4]{5} \sqrt{x^4+5}}-\frac{6 \sqrt [4]{5} \left (x^2+\sqrt{5}\right ) \sqrt{\frac{x^4+5}{\left (x^2+\sqrt{5}\right )^2}} E\left (2 \tan ^{-1}\left (\frac{x}{\sqrt [4]{5}}\right )|\frac{1}{2}\right )}{\sqrt{x^4+5}} \]

Antiderivative was successfully verified.

[In]

Int[((2 + 3*x^2)*Sqrt[5 + x^4])/x^4,x]

[Out]

(-6*Sqrt[5 + x^4])/x - ((2 - 9*x^2)*Sqrt[5 + x^4])/(3*x^3) + (6*x*Sqrt[5 + x^4])/(Sqrt[5] + x^2) - (6*5^(1/4)*
(Sqrt[5] + x^2)*Sqrt[(5 + x^4)/(Sqrt[5] + x^2)^2]*EllipticE[2*ArcTan[x/5^(1/4)], 1/2])/Sqrt[5 + x^4] + ((2 + 9
*Sqrt[5])*(Sqrt[5] + x^2)*Sqrt[(5 + x^4)/(Sqrt[5] + x^2)^2]*EllipticF[2*ArcTan[x/5^(1/4)], 1/2])/(3*5^(1/4)*Sq
rt[5 + x^4])

Rule 1272

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[((f*x)^(m + 1)*(a
+ c*x^4)^p*(d*(m + 4*p + 3) + e*(m + 1)*x^2))/(f*(m + 1)*(m + 4*p + 3)), x] + Dist[(4*p)/(f^2*(m + 1)*(m + 4*p
 + 3)), Int[(f*x)^(m + 2)*(a + c*x^4)^(p - 1)*(a*e*(m + 1) - c*d*(m + 4*p + 3)*x^2), x], x] /; FreeQ[{a, c, d,
 e, f}, x] && GtQ[p, 0] && LtQ[m, -1] && m + 4*p + 3 != 0 && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1282

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*(f*x)^(m + 1)*(a
 + c*x^4)^(p + 1))/(a*f*(m + 1)), x] + Dist[1/(a*f^2*(m + 1)), Int[(f*x)^(m + 2)*(a + c*x^4)^p*(a*e*(m + 1) -
c*d*(m + 4*p + 5)*x^2), x], x] /; FreeQ[{a, c, d, e, f, p}, x] && LtQ[m, -1] && IntegerQ[2*p] && (IntegerQ[p]
|| IntegerQ[m])

Rule 1198

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{\left (2+3 x^2\right ) \sqrt{5+x^4}}{x^4} \, dx &=-\frac{\left (2-9 x^2\right ) \sqrt{5+x^4}}{3 x^3}-\frac{2}{3} \int \frac{-45-2 x^2}{x^2 \sqrt{5+x^4}} \, dx\\ &=-\frac{6 \sqrt{5+x^4}}{x}-\frac{\left (2-9 x^2\right ) \sqrt{5+x^4}}{3 x^3}+\frac{2}{15} \int \frac{10+45 x^2}{\sqrt{5+x^4}} \, dx\\ &=-\frac{6 \sqrt{5+x^4}}{x}-\frac{\left (2-9 x^2\right ) \sqrt{5+x^4}}{3 x^3}-\left (6 \sqrt{5}\right ) \int \frac{1-\frac{x^2}{\sqrt{5}}}{\sqrt{5+x^4}} \, dx+\frac{1}{3} \left (2 \left (2+9 \sqrt{5}\right )\right ) \int \frac{1}{\sqrt{5+x^4}} \, dx\\ &=-\frac{6 \sqrt{5+x^4}}{x}-\frac{\left (2-9 x^2\right ) \sqrt{5+x^4}}{3 x^3}+\frac{6 x \sqrt{5+x^4}}{\sqrt{5}+x^2}-\frac{6 \sqrt [4]{5} \left (\sqrt{5}+x^2\right ) \sqrt{\frac{5+x^4}{\left (\sqrt{5}+x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{x}{\sqrt [4]{5}}\right )|\frac{1}{2}\right )}{\sqrt{5+x^4}}+\frac{\left (2+9 \sqrt{5}\right ) \left (\sqrt{5}+x^2\right ) \sqrt{\frac{5+x^4}{\left (\sqrt{5}+x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{x}{\sqrt [4]{5}}\right )|\frac{1}{2}\right )}{3 \sqrt [4]{5} \sqrt{5+x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0243619, size = 54, normalized size = 0.28 \[ -\frac{\sqrt{5} \left (9 x^2 \, _2F_1\left (-\frac{1}{2},-\frac{1}{4};\frac{3}{4};-\frac{x^4}{5}\right )+2 \, _2F_1\left (-\frac{3}{4},-\frac{1}{2};\frac{1}{4};-\frac{x^4}{5}\right )\right )}{3 x^3} \]

Antiderivative was successfully verified.

[In]

Integrate[((2 + 3*x^2)*Sqrt[5 + x^4])/x^4,x]

[Out]

-(Sqrt[5]*(2*Hypergeometric2F1[-3/4, -1/2, 1/4, -x^4/5] + 9*x^2*Hypergeometric2F1[-1/2, -1/4, 3/4, -x^4/5]))/(
3*x^3)

________________________________________________________________________________________

Maple [C]  time = 0.016, size = 170, normalized size = 0.9 \begin{align*} -{\frac{2}{3\,{x}^{3}}\sqrt{{x}^{4}+5}}+{\frac{4\,\sqrt{5}}{75\,\sqrt{i\sqrt{5}}}\sqrt{25-5\,i\sqrt{5}{x}^{2}}\sqrt{25+5\,i\sqrt{5}{x}^{2}}{\it EllipticF} \left ({\frac{x\sqrt{5}\sqrt{i\sqrt{5}}}{5}},i \right ){\frac{1}{\sqrt{{x}^{4}+5}}}}-3\,{\frac{\sqrt{{x}^{4}+5}}{x}}+{\frac{{\frac{6\,i}{5}}}{\sqrt{i\sqrt{5}}}\sqrt{25-5\,i\sqrt{5}{x}^{2}}\sqrt{25+5\,i\sqrt{5}{x}^{2}} \left ({\it EllipticF} \left ({\frac{x\sqrt{5}\sqrt{i\sqrt{5}}}{5}},i \right ) -{\it EllipticE} \left ({\frac{x\sqrt{5}\sqrt{i\sqrt{5}}}{5}},i \right ) \right ){\frac{1}{\sqrt{{x}^{4}+5}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2+2)*(x^4+5)^(1/2)/x^4,x)

[Out]

-2/3*(x^4+5)^(1/2)/x^3+4/75*5^(1/2)/(I*5^(1/2))^(1/2)*(25-5*I*5^(1/2)*x^2)^(1/2)*(25+5*I*5^(1/2)*x^2)^(1/2)/(x
^4+5)^(1/2)*EllipticF(1/5*x*5^(1/2)*(I*5^(1/2))^(1/2),I)-3*(x^4+5)^(1/2)/x+6/5*I/(I*5^(1/2))^(1/2)*(25-5*I*5^(
1/2)*x^2)^(1/2)*(25+5*I*5^(1/2)*x^2)^(1/2)/(x^4+5)^(1/2)*(EllipticF(1/5*x*5^(1/2)*(I*5^(1/2))^(1/2),I)-Ellipti
cE(1/5*x*5^(1/2)*(I*5^(1/2))^(1/2),I))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x^{4} + 5}{\left (3 \, x^{2} + 2\right )}}{x^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5)^(1/2)/x^4,x, algorithm="maxima")

[Out]

integrate(sqrt(x^4 + 5)*(3*x^2 + 2)/x^4, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{x^{4} + 5}{\left (3 \, x^{2} + 2\right )}}{x^{4}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5)^(1/2)/x^4,x, algorithm="fricas")

[Out]

integral(sqrt(x^4 + 5)*(3*x^2 + 2)/x^4, x)

________________________________________________________________________________________

Sympy [C]  time = 1.99396, size = 83, normalized size = 0.43 \begin{align*} \frac{3 \sqrt{5} \Gamma \left (- \frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, - \frac{1}{4} \\ \frac{3}{4} \end{matrix}\middle |{\frac{x^{4} e^{i \pi }}{5}} \right )}}{4 x \Gamma \left (\frac{3}{4}\right )} + \frac{\sqrt{5} \Gamma \left (- \frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{3}{4}, - \frac{1}{2} \\ \frac{1}{4} \end{matrix}\middle |{\frac{x^{4} e^{i \pi }}{5}} \right )}}{2 x^{3} \Gamma \left (\frac{1}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x**2+2)*(x**4+5)**(1/2)/x**4,x)

[Out]

3*sqrt(5)*gamma(-1/4)*hyper((-1/2, -1/4), (3/4,), x**4*exp_polar(I*pi)/5)/(4*x*gamma(3/4)) + sqrt(5)*gamma(-3/
4)*hyper((-3/4, -1/2), (1/4,), x**4*exp_polar(I*pi)/5)/(2*x**3*gamma(1/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x^{4} + 5}{\left (3 \, x^{2} + 2\right )}}{x^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5)^(1/2)/x^4,x, algorithm="giac")

[Out]

integrate(sqrt(x^4 + 5)*(3*x^2 + 2)/x^4, x)